

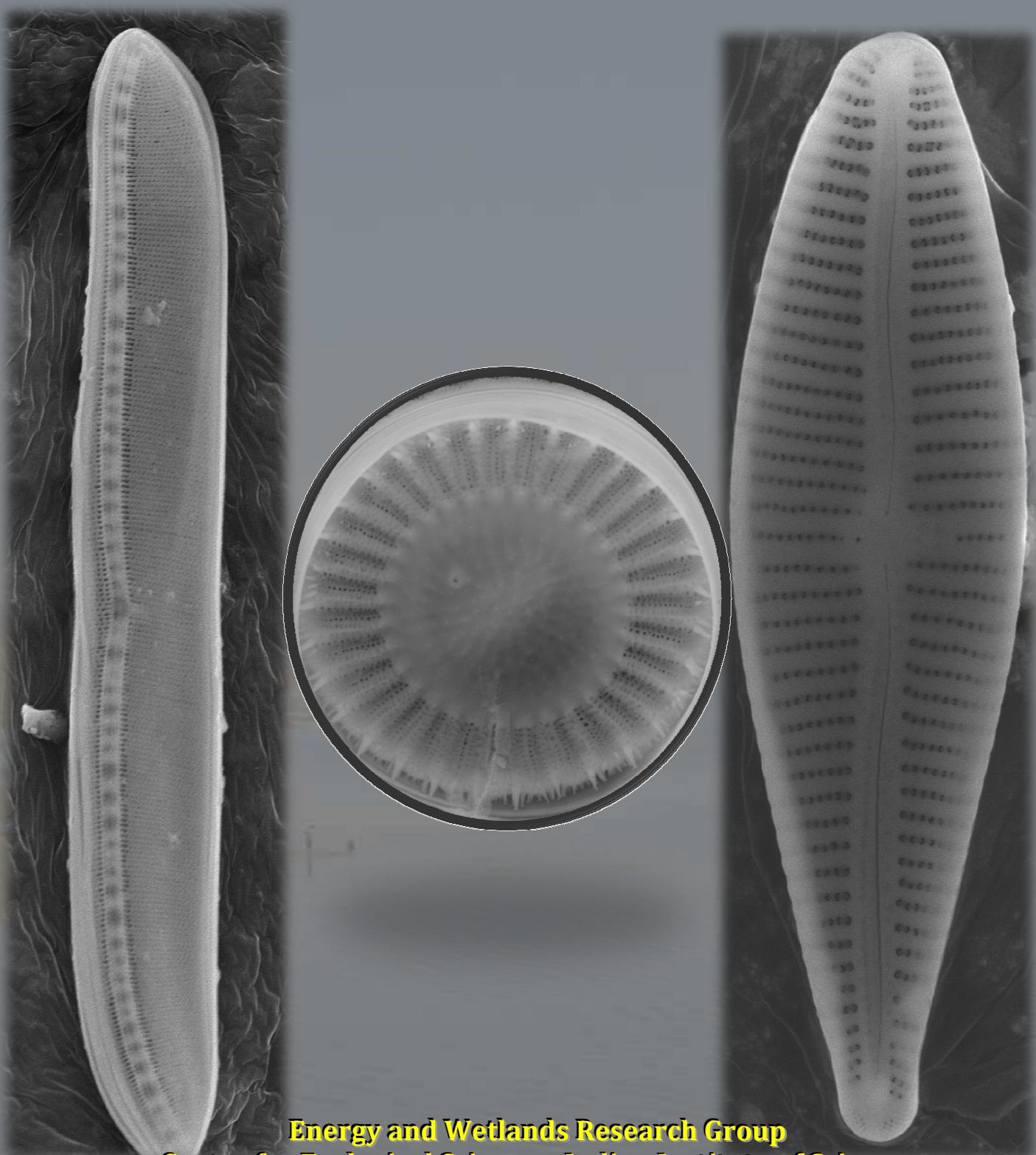
# DIATOM BASED POLLUTION MONITORING IN URBAN WETLANDS OF COIMBATORE, TAMIL NADU

Karthick, B.  
Alakananda, B.  
Ramachandra, T. V.

ENVIS TECHNICAL REPORT - 31

February - 2009

ENVIRONMENTAL INFORMATION SYSTEM [ENVIS]  
Centre for Ecological Sciences, Indian Institute of Science,


Bangalore - 560012, INDIA

Web: <http://ces.iisc.ernet.in/energy/>  
<http://ces.iisc.ernet.in/biodiversity>

Email: [cestvr@ces.iisc.ernet.in](mailto:cestvr@ces.iisc.ernet.in)  
[energy@ces.iisc.ernet.in](mailto:energy@ces.iisc.ernet.in)



Images were taken using Scanning Electron Microscope at Institute Nanocenter Initiative at IISc



**Energy and Wetlands Research Group  
Centre for Ecological Sciences, Indian Institute of Science,  
Bangalore - 560012, INDIA**

Web: <http://ces.iisc.ernet.in/energy/>  
<http://ces.iisc.ernet.in/biodiversity>

Email: [cestvr@ces.iisc.ernet.in](mailto:cestvr@ces.iisc.ernet.in); [energy@ces.iisc.ernet.in](mailto:energy@ces.iisc.ernet.in)  
Telephone: 91-80-23600985/22932506/22933099  
Fax: 91-80-23601428/23600085/23600683[CES-TV]



# Contents

|                                               |                                     |
|-----------------------------------------------|-------------------------------------|
| Contents .....                                | 1                                   |
| List of Figures.....                          | <b>Error! Bookmark not defined.</b> |
| List of Tables.....                           | 2                                   |
| Summary .....                                 | 3                                   |
| Introduction.....                             | 4                                   |
| Need to study Wetlands .....                  | 5                                   |
| Wetland monitoring .....                      | 5                                   |
| Biological monitoring.....                    | 6                                   |
| Diatoms .....                                 | 7                                   |
| Diatoms as bio-indicators .....               | 8                                   |
| Objectives.....                               | 9                                   |
| Study Area .....                              | 9                                   |
| Methods and Materials .....                   | 11                                  |
| Diatom sampling .....                         | 11                                  |
| Water sampling.....                           | 11                                  |
| Ecological Diversity and diatom indices ..... | 11                                  |
| Results and Discussion .....                  | 16                                  |
| Diatom Diversity.....                         | 16                                  |
| Dominance.....                                | 19                                  |
| Evenness.....                                 | 19                                  |
| Shannon index.....                            | 20                                  |
| Fisher alpha diversity Index.....             | 21                                  |
| Berger-Parker Index .....                     | 22                                  |
| Diatom assemblages and trophic condition..... | 23                                  |
| Diatom Indices .....                          | 24                                  |
| Habitat preference .....                      | 26                                  |
| Conclusion.....                               | 32                                  |
| Acknowledgement .....                         | 32                                  |
| References .....                              | 33                                  |
| Annexure: I - List of Species.....            | 40                                  |
| Annexure: II - Illustrations .....            | 44                                  |

## List of Figures

|                                                                                                                                                                   |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 1 Coimbatore city with the sampling points. (Maps Courtesy: Google) .....                                                                                  | 10 |
| Figure 2 Relative abundance of four most dominant genera plotted with sites arranged in order of increase in electrical conductivity (left) and pH (right). ..... | 18 |
| Figure 3 Dominance Index across sites.....                                                                                                                        | 19 |
| Figure 4 Evenness Index across sites.....                                                                                                                         | 20 |
| Figure 5 Shannon Index across sites.....                                                                                                                          | 21 |
| Figure 6 Fisher alpha Index across sites .....                                                                                                                    | 21 |
| Figure 7 Berger- Parker Index across sites.....                                                                                                                   | 22 |

## List of Tables

|                                                                      |    |
|----------------------------------------------------------------------|----|
| Table 1 Diversity parameters and indices .....                       | 12 |
| Table 2 Diatom Indices.....                                          | 15 |
| Table 3 Water Quality Variables of Coimbatore Wetlands.....          | 16 |
| Table 4 Diversity indices for Coimbatore wetlands.....               | 17 |
| Table 5 Diatom Indices values for the wetlands .....                 | 24 |
| Table 6 Class limit values for Diatom indices.....                   | 25 |
| Table 7 Trophic condition of the wetlands with dominant species..... | 25 |
| Table 8 Species list with their occurrence in three habitats .....   | 27 |

# Diatom Based Pollution Monitoring in Urban Wetlands of Coimbatore, Tamil Nadu

## Summary

Diatoms comprise a ubiquitous, photosynthetic and distinctive group of essentially unicellular algae. They are more specific in their preference and tolerance of environmental conditions than most other aquatic biota and have long been recognised as excellent indicators of ecological status of water bodies. This study documents the diatom flora of six urban wetlands of Coimbatore city, examines benthic diatom assemblages across different habitats and investigates pollution status based on diatom composition. 96 Species belonging to 34 genera were recorded and out of them 27 species were dominant. The dominant species that are cosmopolitan include *Cyclotella meneghiniana*, *Nitzschia* sp., *Sellaphora pupula*, *Gomphonema parvulum* and *Navicula* sp. Singanallur wetland and Noyyal river stretches are characterised by pollution tolerant species with low diatom diversity. Diatom assemblages indicate wetlands; Vedapatti, Perur and Sundakamuthur are moderately polluted, while Pallapalayam, Noyyal River and Singanallur wetlands are heavily polluted.

**Keywords:** Urban wetlands, pollution indicators, diatom-indices, diatom assemblages, *Cyclotella*, Coimbatore

# Diatom Based Pollution Monitoring in Urban Wetlands of Coimbatore, Tamil Nadu

## Introduction

Wetlands are an essential part of human civilization, meeting many crucial needs for life on earth such as drinking water, energy, fodder, biodiversity, flood storage, transport, recreation, and climate stabilizers. They also aid in improving water quality by filtering sediments and nutrients from surface water. Wetlands play a major role in removing dissolved nutrients such as nitrogen and to some extent heavy metals (Ramachandra *et al.*, 2002). Hence, they are often described as “Kidneys of the landscape”. Wetlands encompass many different habitats including wetlands, marshes, swamps, flood plains, bogs, shallow ponds, littoral zones of larger water bodies and peatlands. All these share the fundamental feature of complex interactions among basic components such as soil, water, flora and fauna.

Wetlands are ecologically important in relation to stability and biodiversity in a region and also in terms of energy and material flow. Wetlands are “lands transitional between terrestrial and aquatic ecosystems where the water table is usually at or near the surface or the land is covered by shallow water” (Mitch and Gosselink, 1986). Hydrological conditions of a wetland modify or change chemical and physical properties such as nutrient availability, degree of substrate anoxia, soil salinity, sediment properties and pH, which in turn, influence the biotic integrity (Gosselink and Turner, 1978). Wetlands retain water during dry periods, thus keeping the water table high and stable. During floods they diminish floods intensity and biotic components trap suspended solids and attached nutrients. A healthy wetland retains a natural flow of water, minimising flooding in the catchment. Wetlands receive water deposited as groundwater, during dry seasons. Thus, a healthy wetland does the function of water recharge and discharge effectively, while meeting the human needs. However, humans have altered the natural

flow regime of wetlands either by altering the natural drains, changing the land cover drastically or letting the untreated sewage in urban areas in recent times. The removal of such wetland systems or letting untreated sewage has caused the deterioration of water quality and ecological degradation in catchment (Prasad *et al.*, 2003).

In India, wetlands are distributed in all the biogeographic regions occupying 58.2 million hectares, including areas under wet paddy cultivation (Directory of Indian Wetlands, 1990). They exhibit significant ecological diversity, primarily because of variability in climate, habitat and topography. Today, wetlands are one of the most threatened habitats in India. They have been converted for agriculture, industry or settlements and some are affected by industrial effluents, sewage, household wastes and sedimentation. Due to urbanization and lack of holistic approaches in land management, land and waterbodies in and closer to urban centres have been targeted. The water crisis, frequent flooding in urban areas has necessitated understanding the role of wetlands, and the need for integrated approaches to maintain the ecological balance, while meeting the demands of the growing population.

### ***Need to study Wetlands***

Rising water demand has exacerbated the impacts. Societies need to adopt improved strategies for integrated wetland management to ensure the quantity and quality of water is maintained for the ecosystem functions. In this regard, Ramsar Convention's Agenda 21 recommends the work towards better understanding of these threatened ecosystems through basic research, awareness and education, ecosystem and species conservation.

### ***Wetland monitoring***

Effective assessment tools are needed for consistent evaluation of the condition with stressors of wetland resources for solving problems. This entails inventorying and

regular monitoring of wetlands. Physical and chemical monitoring of water quality has been practiced for a long time. Standard techniques are used for measuring light penetration, turbidity, conductivity, dissolved oxygen, biological oxygen demand and nutrients like phosphates, nitrates, nitrites, ammonia, and so on (Chapman, 1992). These measurements even though provide us simple values, but don't provide overall health and condition of the ecosystem enabling both preventive as well as restorative measures. Many environmental factors vary on different spatial and temporal scales in complex ecosystems such as wetlands. These variables range from climate, landuse, and geomorphology of a watershed (eg, Richards *et al.*, 1996) to the physical, chemical and biological characteristics. In this context, monitoring involving biological communities of an ecosystem would help in assessing, as they can integrate and reflect the effects of chemical and physical disturbances that occur in short duration as well as over extended period of time.

### ***Biological monitoring***

Monitoring using organisms, to assess the ecosystem's condition is referred as biological monitoring or biomonitoring. Biological indicators based on organisms living from one day to several years provide an integrated assessment of environmental conditions in streams, rivers and wetlands that are spatially and temporally variable. An ideal biomonitoring should be useful for both long and short term monitoring. Current conditions may be linked to the past conditions very effectively, if the same biomonitor are used for both short and long-term monitoring (Dixit *et al.*, 1992). Biomonitoring consists of groups of species, each group with well defined habitats, so that they may reflect changes in a variety of habitats. Biological indicators are important parts of environment assessment because protection and management of these organisms are the objectives of most programs. Aquatic communities (like algae, fish, riparian vegetation, macro-invertebrates), integrate and reflect the effects of chemical and physical disturbances. A biota that undergoes change from dominance to gradual disappearance of a species is of ecological significance. The primary aim here is to detect changes in

abundance, structure and diversity of a target species assemblage as compared to the reference condition. Bio-indicators include organisms that are:

- close to the transfer of nutrient and energy in the food web;
- wider range of distribution;
- simple life-cycle stages, and identifiable to the species or even the morphotype level;
- sensitive to fine changes in the environment with a range of tolerance; and
- preference to environmental variables, so a change in the environment is reflected by a shift in species dominance.

Now, biological monitoring has begun to address the question of biological integrity of wetlands influenced by various anthropogenic land use activities.

Numerous methods have been developed in biomonitoring for an assessment of the integrity of aquatic systems. Most are based on the attributes of whole assemblages of organisms such as fish, algae or invertebrates. A variety of assemblages have been used in biological assessments ranging from macrophytes (Galatowitsch *et al.*, 1999, Gernes and Helgen, 1999) macroinvertebrates (Kerans and Karr, 1994 and Barbour *et al.*, 1996); amphibians (Micacchion, 2004); fish (Schulz *et al.*, 1999); birds (O'Connell *et al.*, 1998) and diatoms (Fore and Gafe, 2002).

## ***Diatoms***

Diatoms under Class *Bacillariophyceae* comprise a ubiquitous, photosynthetic and distinctive group of unicellular algae. Diatoms are made up of siliceous cell wall consisting of two valves; epivalve and hypovalve which fit together like a petri dish together known as frustules. In between two valves series of bands are present known as girdle bands. During cell division the new frustules are formed from the inside of the cell. The outer or older is the epivalve and inner or newly formed one is hypovalve forms one daughter cell where as outer or older hypovalve acts as epivalve and newly

formed valve will become hypovalve. This forms another daughter cell. During this process cell size goes on decreasing. The original size is attained by undergoing sexual reproduction by auxospore formation.

### ***Diatoms as bio-indicators***

Diatoms are more specific in their preference and tolerance of environmental conditions than most other aquatic biota. Diatoms were the first group of biota used for detecting organic pollution (e.g., the saprobian system by Kolkwitz and Marsson in 1909, cited in Stoermer and Smol, 2001). Diatoms respond directly and sensitive to many physical, chemical and biological changes such as temperature, nutrient concentration and herbivory. They are sensitive to many habitat conditions and show variability in biomass and species composition. At higher spatial and temporal levels effects of resources and stressors on diatom assemblages can be constrained by climatic, geology and land use. Diatoms are readily distinguished to species and subspecies level based on unique morphological features. Diatoms have one of the shortest generation times of all biological indicators. They reproduce and respond rapidly to environmental change and provide early warning indicators of both pollution increases and habitat restoration success. Frustules are preserved in sediments and record habitat history. Diatoms collection and methods are ease and low cost. Samples can be archived easily for long periods of time for future analysis and long term records.

Diatoms occur in all types of environment where ever moisture is present. A golden-brown mucilage film on the surface of substrata indicates the presence of benthic diatoms whereas free living in the water column is the planktonic diatoms. Data on diatoms as indicators of water quality reflecting pH, salinity and organic pollution in Europe, America, South Africa and Japan have been available for a long time (e.g. Patrick, 1986; Schoeman, 1973; Round, 1986, 1990; Cox, 1991). However, there is no information available on diatoms as indicator species of wetlands in India. The present study assesses six major wetlands in an urban ecosystem using diatoms as bioindicators.

## Objectives

Objectives of this research are to:

- i. determine the pollution status of selected wetlands of Coimbatore by using diatoms
- ii. prepare an illustrated guide to the common diatom flora of wetlands of Coimbatore.

## Study Area

Coimbatore also referred popularly as Manchester of India is an important industrial city, located in Tamil Nadu ( $10^{\circ}55' - 11^{\circ}10' N$ , and  $77^{\circ}10' - 76^{\circ}50' E$ ) at an average altitude of 470m, ranking 11<sup>th</sup> in terms of population (Figure 1). There are more than 30,000 small, medium and large industries including textile mills and foundries in the city employing about 40% of the population. The growing industrial sector and ensuing immigration of people pose heavy burden on the city infrastructure that did not grow in proportion. The city does not have facilities for treatment of industrial, municipal and domestic wastes. Wetlands and Noyyal River have been used for disposal of wastes of the city. Natural drainage networks have been converted to storm water drains for letting the sewerage into wetlands without any treatment. In Coimbatore city there are 28 wetlands, mostly fed by the river Noyyal. The river, flowing through the city on its south, originates in the Vellingiri hills in Western Ghats, located on the south-western side of the city. Some of these wetlands are seasonal and have also been used as dumping yard for garbage and industrial wastes during dry period (Mohan Raj *et al.*, 2000). During the monsoon, with the inflow of water, this activity leads to contamination of groundwater sources. Six wetlands selected for biomonitoring (Figure 1) are: Vedapatti (VPP), Pallapalayam (PPL), Sundakamuthur (SMS), Perur (PRP), Noyyal (NLP) and Singanallur (SNP).

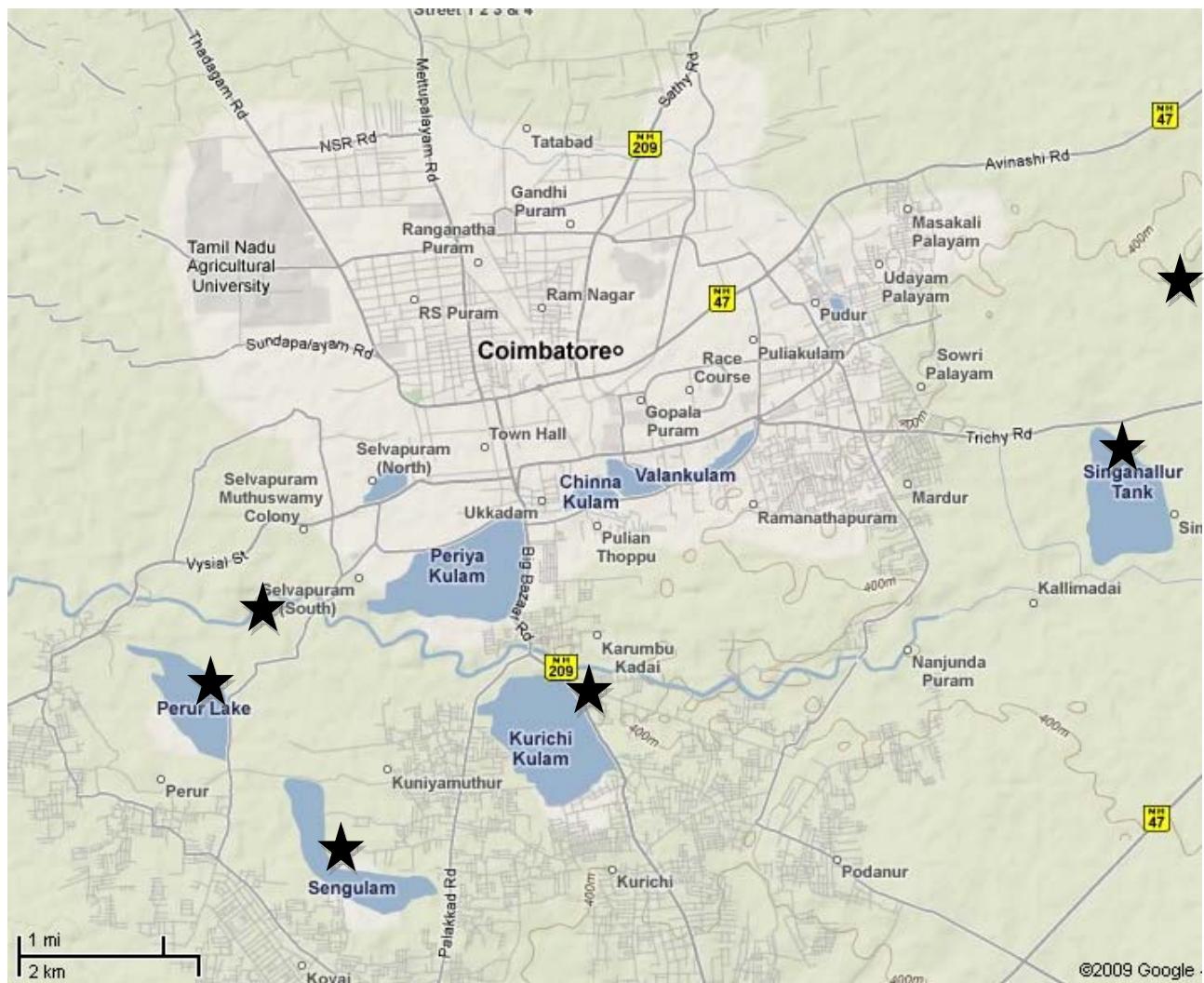



Figure 1 Coimbatore city with the sampling points. (Maps Courtesy: Google)

## Methods and Materials

### *Diatom sampling*

Diatom samples were collected (from cobbles, aquatic plants and sediment) and prepared using standard methods as per Taylor *et al.*, (2005) from selected wetlands. Diatom communities were then analysed by counting between 400 and 450 valves. During enumeration the dimensions of diatom valve characteristics, like its length, width and striae densities in 10  $\mu\text{m}$  were measured. Identification of diatoms is carried out using taxonomic guides (Gandhi, 1957 1959a, 1959b, 1961, 1962, 1967, 1998; Lange-Bertalot, 2001; Krammer, 2002; Taylor, 2007; Karthick *et al.*, 2008).

### *Water sampling*

Water samples were collected from all sites and physical variables like pH, temperature, Electric conductivity, Salinity and Total dissolved solids were measured using EXTECH combo probe.

### *Ecological Diversity and diatom indices*

Ecological diversity was calculated for each sample using diversity indices given in Table 1.

Table 1 Diversity parameters and indices

| Index                | Equation                                                                                                             | Remarks                                                                                                                                        | References                                            | Eq.<br>No |
|----------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------|
| <b>Abundance</b>     | $\frac{\text{No. of Individuals of a species X 100}}{\text{No. of Sampling units}}$                                  |                                                                                                                                                |                                                       | 1         |
| <b>Shannon</b>       |                                                                                                                      |                                                                                                                                                |                                                       |           |
| <b>Weiner's (H')</b> | $H' = - \sum_{i=1}^S p_i \ln p_i$                                                                                    | The value ranges between 1.5 and 3.5 and rarely surpasses 4.5                                                                                  | Ludwig and Renolds (1998); Legendre and Legendre 1998 | 2         |
|                      | Pi: proportion of individuals of i <sup>th</sup> species                                                             |                                                                                                                                                |                                                       |           |
| <b>Simpson's</b>     | $D = \frac{\sum_{i=1}^S n_i(n_i - 1)}{N(N - 1)}$                                                                     | The value varies from 0 to 1. A value of 0 indicates the presence of only one species, while 1 means that all species are equally represented. | Ludwig and Reynolds (1998)                            | 3         |
| <b>Dominance</b>     | 1-Simpson index<br>$D = \text{sum } \left( \frac{n_i}{n} \right)^2$<br>Where ni is number of individuals of taxon i. | The occupancy of a species over an area. Ranges from 0 (all taxa are equally present) to 1 (one taxon dominates the community completely)      |                                                       | 4         |

---

|                       |                                                                                                                                     |                                                                                                                                    |   |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---|
| <b>Evenness</b>       | $H' = - \sum_{i=1}^S p_i \ln p_i$                                                                                                   | The measure of biodiversity which quantifies how equal the community                                                               | 5 |
| <b>Fisher's alpha</b> | $S = a * \ln \left( \frac{1 + n}{a} \right)$                                                                                        | It is a mathematical model used to measure diversity                                                                               | 6 |
|                       | Where $S$ is number of taxa, $n$ is number of individuals and $a$ is the Fisher's alpha.                                            |                                                                                                                                    |   |
| <b>Berger-Parker</b>  | $d = \frac{N_{max}}{N}$                                                                                                             | The number of Berger and Parker individuals in the 1970; dominant taxon relative to $n$ , where $n$ is the total number of species | 7 |
|                       | Where $N_{max}$ is the number of individuals in the most abundant species and $N$ is the total number of individuals in the sample. |                                                                                                                                    |   |

---

Diatom specific indices like Generic Diatom Index or GDI (Coste and Aypahassorho, 1991), the Specific Pollution sensitivity Index or SPI (Coste in Cemagref, 1982), the Biological Diatom Index or BDI (Lenoir and Coste, 1996), the Artois-Picardie Diatom Index or APDI (Prygiel *et al.*, 1996), Sládeček's index or SLA (Sládeček, 1986), the Eutrophication/Pollution Index or EPI (Dell'Uomo, 1996), Rott's Index or ROT (Rott, 1991), Leclercq and Maquet's Index or LMI (Leclercq and Maquet, 1987), the Commission of Economical Community Index or CEC (Descy and Coste, 1991), Schiefele and Schreiner's index or SHE (Schiefele and Schreiner, 1991), the Trophic Diatom Index or TDI (Kelly and Whitton, 1995), and the Watanabe index or WAT (Watanabe *et al.*, 1986) were also computed as listed in Table 2. All the diatom indices were calculated using Equation 8 (Zelinka and Marvan, 1961) except for the CEC, SHE, TDI and WAT index and all of the above indices, except TDI (maximum value of 100), the maximum value of 20 indicates pristine water.

$$index = \frac{\sum_{j=1}^n a_j s_j v_j}{\sum_{j=1}^n a_j v_j} \quad (\text{Equation: 8})$$

Where  $a_j$  = abundance (proportion) of species  $j$  in sample,  $v_j$  = indicator value and  $s_j$  = pollution sensitivity of species  $j$ .

The performance of the indices depends on the values given to the constants  $s$  and  $v$  for each taxon and the values of the index ranges from 1 to an upper limit equal to the highest value of  $s$ . Each diatom species used in the calculation/equation is assigned two values; the first value reflects the tolerance or affinity of the diatom to a certain water quality (good or bad) while the second value indicates how strong (or weak) the relationship is. Abundance and weighted average were computed. This would indicate how many of the particular diatoms in the sample occur in relation to the total number counted.

Table 2 Diatom Indices

| Abbreviation | Full name                                  | Reference                       |
|--------------|--------------------------------------------|---------------------------------|
| IPS          | Specific Pollution Sensitivity Metric      | (Coste, 1987)                   |
| SLAD         | Sládeček's pollution metric                | (Sládeček, 1986)                |
| DESCY        | Descy's pollution metric                   | (Descy, 1979)                   |
| L&M          | Leclercq and Maquet's pollution metric     | (Leclercq and Maquet, 1987)     |
| SHE          | Steinberg and Schiefele trophic metric     | (Steinberg and Schiefele, 1988) |
| WAT          | Watanabe <i>et al.</i> , pollution metric  | (Lecointe <i>et al.</i> , 2003) |
| TDI          | Trophic Diatom metric                      | (Kelly and Whitton, 1995)       |
| EPI-D        | Pollution metric based on diatoms          | (Dell'Uomo, 1996)               |
| ROTT         | Trophic metric                             | (Rott <i>et al.</i> , 1999)     |
| IDG          | Generic Diatom Metric                      | (Lecointe <i>et al.</i> , 2003) |
| CEE          | Commission for Economical Community metric | (Descy and Coste, 1991)         |
| IBD          | Biological Diatom Metric                   | (Prygiel and Coste, 1999)       |
| IDAP         | Indice Diatomique Artois Picardie          | (Lecointe <i>et al.</i> , 2003) |
| IDP          | Pampean Diatom Index (IDP)                 | (Gómez and Licursi, 2001)       |

## Results and Discussion

Water samples were collected from all sites and physical variables like pH, Temperature, Electric conductivity, Salinity and Total dissolved solids were measured and are listed in Table 3. pH of sampled wetlands range from 7.4 to 9 indicating neutral to alkaline conditions. Electric conductivity ranges from 280 (Vedapatti) - 2250 $\mu$ S/cm (Singanallur).

*Table 3 Water Quality Variables of Coimbatore Wetlands*

| Sampling site | Conductivity<br>( $\mu$ S/cm) | Water<br>Temperature (°C) | pH   | Total Dissolved<br>Solids (mg/L) |
|---------------|-------------------------------|---------------------------|------|----------------------------------|
| Vedapatti     | 280                           | 29.6                      | 7.47 | 195                              |
| Sundakamuthur | 283                           | 32.4                      | 9.06 | 198                              |
| Sundakamuthur | 283                           | 32.4                      | 9.06 | 198                              |
| Perur         | 347                           | 29                        | 7.92 | 242                              |
| Pallapalayam  | 733                           | 27.9                      | 9.05 | 511                              |
| Pallapalayam  | 770                           | 29.3                      | 8.83 | 543                              |
| Noyyal River  | 1121                          | 29.7                      | 7.7  | 781                              |
| Singanallur   | 2250                          | 29.3                      | 8.53 | 1590                             |

## *Diatom Diversity*

Diatom samples were collected (from cobbles, aquatic plants and sediment) and prepared using standard methods from Vedapatti, Pallapalayam, Sundakamuthur, Perur, Noyyal and Singanallur wetlands in Coimbatore. Diatom communities were analysed as explained in methods section. 96 Species belonging to 34 Genera were recorded from these wetlands, which are provided in Appendix 1. Among these species, 27 species were dominant (i.e., occurring >5% of any given community). Appendix 2 gives the species-wise light microscopic illustrations. Table 3 lists the diversity indices, which show a significant difference in community structures across the sampled

wetlands. Higher values of Shannon, Simpson and evenness values are for Pallapalayam wetland compared to Singanallur wetland, where dominance index was relatively higher.

*Table 4 Diversity indices for Coimbatore wetlands*

|                   | VP     | PP     | SM     | PP     | SN     | PR     | SM     | NL     |
|-------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| Number of species | 23     | 22     | 29     | 26     | 10     | 28     | 30     | 14     |
| Shannon Index     | 2.371  | 2.498  | 2.066  | 2.621  | 0.4135 | 2.366  | 2.538  | 1.472  |
| Simpson           | 0.8526 | 0.8877 | 0.7276 | 0.8764 | 0.1402 | 0.8545 | 0.874  | 0.6768 |
| Evenness          | 0.4654 | 0.5529 | 0.2723 | 0.5289 | 0.1512 | 0.3805 | 0.4217 | 0.3114 |
| Margalef          | 3.649  | 3.453  | 4.66   | 4.161  | 1.496  | 4.56   | 4.973  | 2.016  |
| Equitability      | 0.756  | 0.8083 | 0.6137 | 0.8045 | 0.1796 | 0.71   | 0.7461 | 0.5579 |
| Fisher alpha      | 5.247  | 4.88   | 7.143  | 6.189  | 1.85   | 7.013  | 7.927  | 2.536  |
| Berger-Parker     | 0.306  | 0.1986 | 0.4963 | 0.2604 | 0.9268 | 0.2547 | 0.2317 | 0.4596 |

**Note:** VP- Vedapatti (Epiphytic); PP- Pallapalayam (Epilithic); SM- Sundakamuthur (Episammic); PP-Pallapalayam (Epiphytic); SN-Singanallur (Epiphytic); PR-Perur (Epiphytic); SM- Sundakamuthur (Epiphytic); NL-Noyyal (Epiphytic)

Common diatoms genera namely *Cyclotella*, *Gomphonema*, *Nitzschia* and *Fragilaria* accounted for large proportion of the community in all sites. Figure 2, a plot of genera across pH and electrical conductivity ranges reveal that:

- *Cyclotella* - present in neutral to high alkaline, and high electrolytic;
- *Gomphonema*, *Nitzschia* - present in entire pH and conductivity ranges; and
- *Fragilaria* - prefer Neutral to alkaline, and moderate electrolytic water.

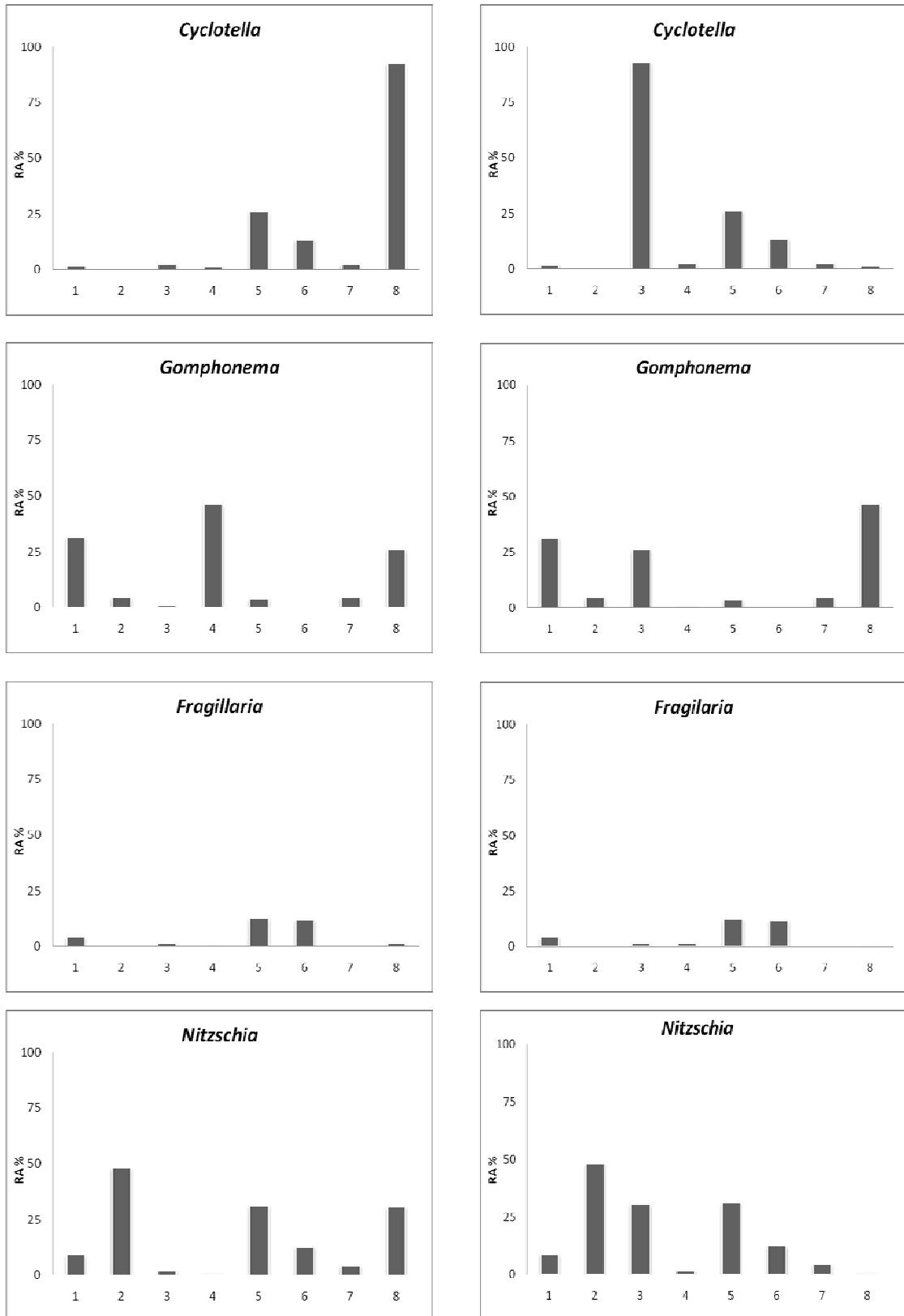



Figure 2 Relative abundance of four most dominant genera plotted with sites arranged in order of increase in electrical conductivity (left) and pH (right).

## Dominance

Dominance is the degree to which different species in an ecological community predominate, ranging from 0 (all taxa are equally present) to 1 (a taxon dominates the community completely). Dominance is calculated (equation 4, Table 1) and is given in Figure 3. Singanallur wetland has 10 species with *Cyclotella meneghiniana* as dominant species (dominance: 0.85), while *Aulocosira granulata* (19.86 %,) dominated Pallapalayam (dominance: 0.11) and *Sellaphora pupula* (23.17%) and *Gomphonema parvulum* (18.48%) were prominent species in Sundakamuthur (dominance: 0.12) wetlands. Remaining sites showed dominance index value between 0.1- 0.4.

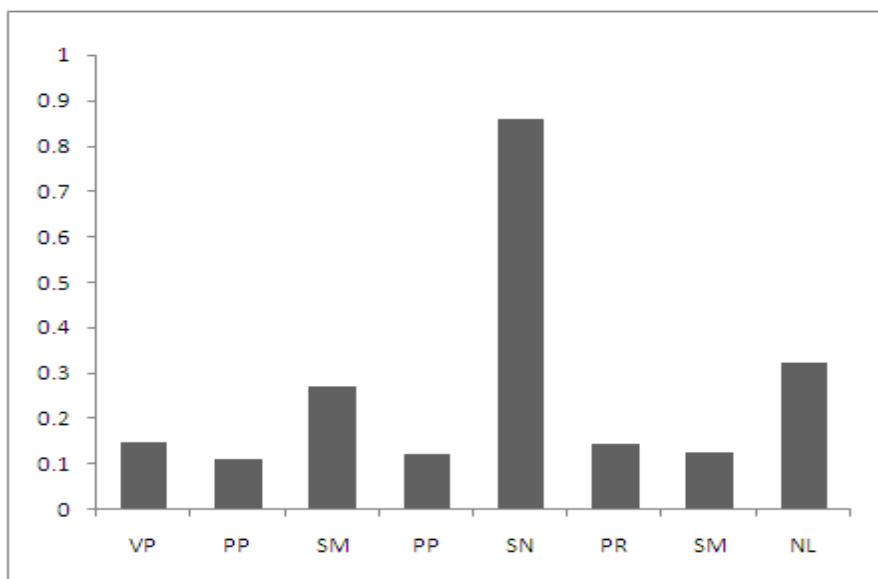



Figure 3 Dominance Index across sites

**Note:** VP- Vedapatti wetland; PP- Pallapalayam wetland; SM- Sundakamuthur wetland; PP-Pallapalayam wetland; SN-Singanallur wetland; PR-Perur wetland ; SM- Sundakamuthur wetland; NL-Noyyal River

## Evenness

Evenness is a measure of biodiversity which quantifies how equal the community is numerically. Figure 4 depicts the evenness computed as per equation 5, Table 1.

*Cyclotella meneghiniana* constitute more than 90% of the total population accounted for low evenness in Singanallur wetland. In Pallapalayam wetland 22 species were recorded, among *Aulocosira granulata* and *Nitzschia obtuse* were represented by 19.86% and 14.61% abundance respectively.

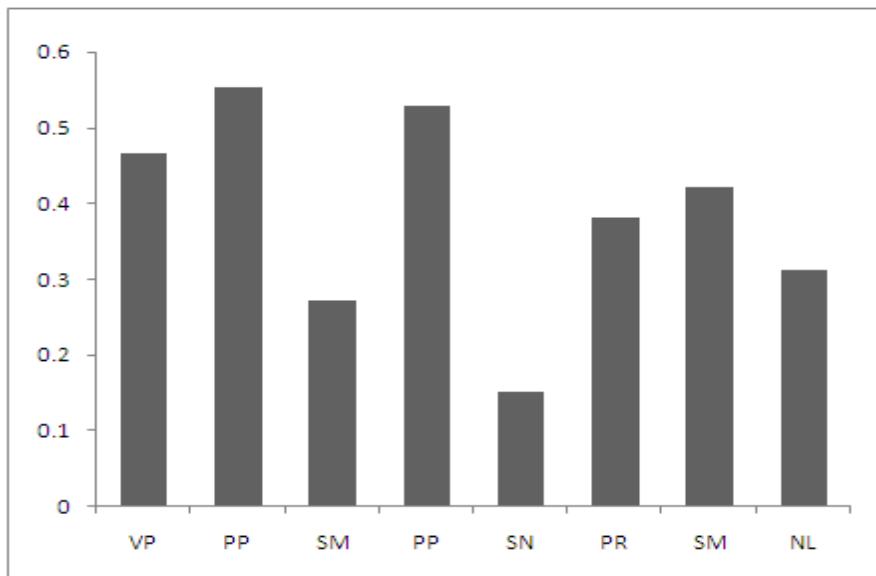



Figure 4 Evenness Index across sites

### Shannon index

Shannon diversity index ( $H'$ ) computed as per equation 2 (Table 1) takes into account the number of individuals as well as number of taxa. This varies from 0 for communities with only a single taxon to high values for communities with many taxa, each with few individuals. Low  $H'$  was recorded in Singanallur wetland (0.4135, *C. meneghiniana* representing 92%) and Noyyal River (1.472, *Nitzschia sp* representing 45.95 %). Species abundance in other sites ranges from 20 to 26 species that represent 15-50% of the total population.

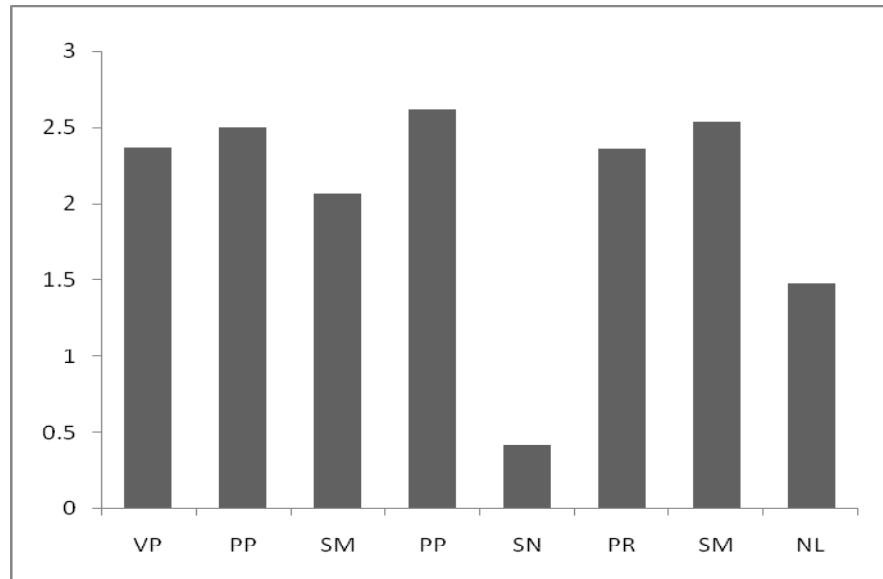



Figure 5 Shannon Index across sites

### Fisher alpha diversity Index

High Fisher's alpha diversity index computed (equation 6, Table 1) was noticed in Sundakamuthur (7.8), Pallapalayam (6.2) and Perur (7) wetlands. Singanallur wetland and Noyyal River with less number of taxa shows low index value.

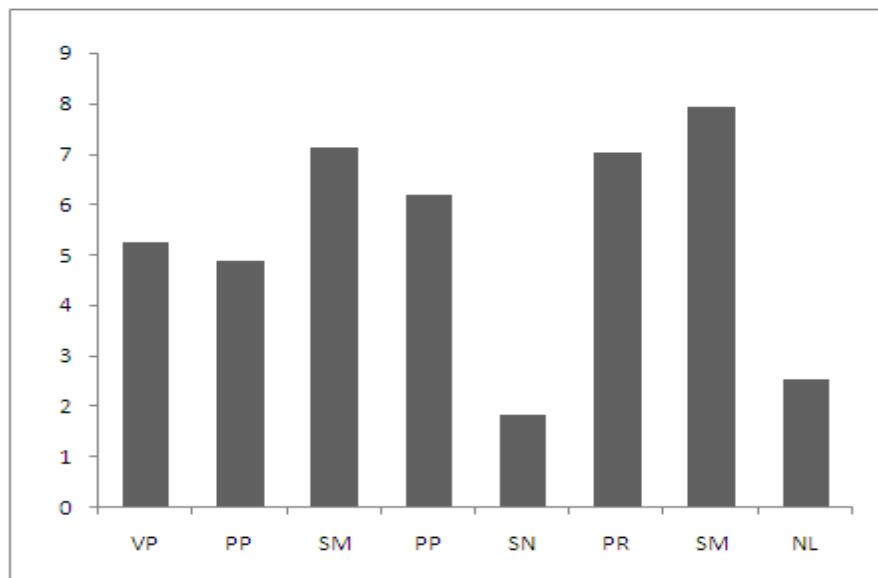



Figure 6 Fisher alpha Index across sites

## Berger-Parker Index

Berger-Parker is calculated (equation 7, Table 1) from the number of individuals in the dominant taxon relative to the total number of species. *Cyclotella meneghiniana* is the dominant species (with 92.68% abundance) showing a high index value in Singanallur wetland. *Diadesmis confervaceae* and *Gomphonema turris* was observed as abundant species (15-30%) in Vedapatti wetland. In Pallapalayam wetland *Aulocosira granulata*, *Cyclotella meneghiniana* and *Nitzschia obtuse* represents to 13-20% of the population from an epilithic habitat and *Aulocosira granulata*, *Cyclotella meneghiniana* represents 19-26% of the population from an epiphytic habitat. *Gomphonema parvulum* and *Cymbella turgid* represents 25.47 and 22.25% respectively in Perur wetland. *Nitzschia sp.* (45%) and *Navicula sp.* (32%) characterize the Noyyal River. In Sundakamuthur wetland, *Sellaphora pupula* 49.63 % and *Navicula rostellata* 12.04% in episammic habitat whereas 23.17% *Sellaphora pupula* and 18.48% *G. parvulum* being present in epiphytic habitat (Figure 6).

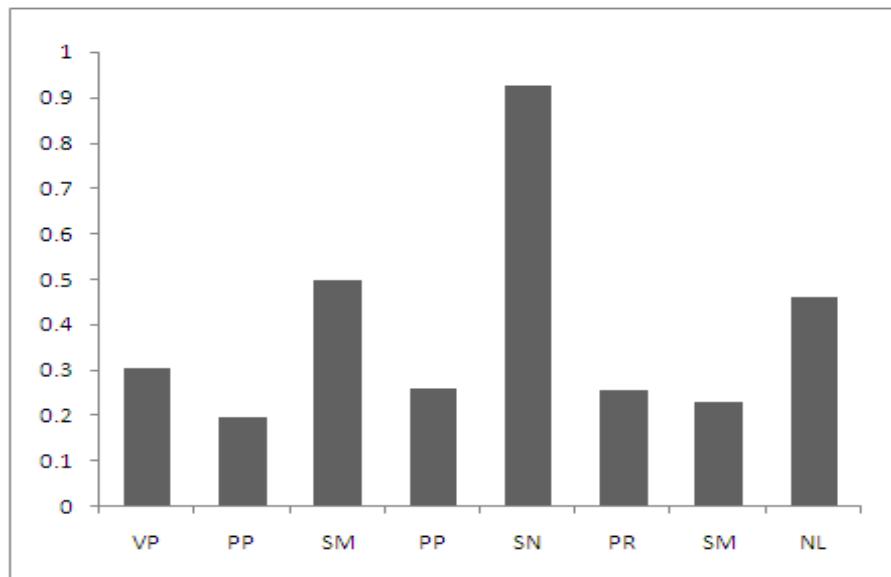



Figure 7 Berger- Parker Index across sites

### ***Diatom assemblages and trophic condition***

Distribution of diatoms reflects the average ecological conditions of water (Cholnoky 1968; Lowe 1974). In Vedapatti wetland, cosmopolitan extreme pollution resistant species *Diadesmis confervaceae*, *Gomphonema gracile* and *G.turris* were dominant among 23 species highlighting eutrophic status of water with higher electrolyte. *Aulocosira granulata* and *Cyclotella meneghiniana* are dominant among 22 species in the epilithic substrata and 26 species in epiphytic substrata of Pallapalayam wetland. These species are cosmopolitan in distribution in both benthic and plankton representing electrolyte rich and brackish inland water.

Episammic sample from Sundakamuthur is dominated by *Sellaphora pupula* and *Navicula rostellata*, which are more tolerant to high levels of pollution. Epiphytic substratum sample is represented by *Gomphonema parvulum* and *G. affine*, which are tolerant to extreme pollution and occurs in water with elevated electrolyte. *Cyclotella meneghiniana* a cosmopolitan species, resistant to extreme pollution with wide range of distribution including eutrophic, electrolyte rich water, accounts for more than 90% of 10 species in Singanallur wetland. Perur wetland with 28 species has *Cymbella turgida*, *Gomphonema parvulum*, *Nitzschia clausii* and *N. obtuse* as dominant species. *Gomphonema parvulum* and *Nitzschia* sp. survive even extreme pollution in wetlands where as *Cymbella turgida* thrive in mesotrophic to eutrophic condition. The assemblages of Noyyal river is similar as of Perur wetland, where this site is represented by *Aulocosira granulata*, *Craticula ambigua*, *Gomphonema parvulum* and *Nitzschia* sp. more in number. *Aulocosira granulata* and *Craticula ambigua* thrive in mesotrophic to eutrophic conditions and *Gomphonema* and *Nitzschia* sp. are capable of surviving even in extreme conditions of Pollution.

A wide range of diatoms distribution is observed in all sampled wetlands of Coimbatore, which include *Gomphonema* sp. and *Nitzschia* sp. *Aulocosira granulata*, *Cyclotella meneghiniana* and *Sellaphora pupula* were dominant in Noyyal River, Pallapalayam and

Sundakamuthur wetlands. These wetlands receives untreated sewage and are either eutrophic to mesotrophic evident from diatom assemblages.

### ***Diatom Indices***

Variants of diatom indices have been used across the globe. Table 2 lists most commonly used diatom indices for representing the degree of pollution suitable for tropical conditions. Diatom indices listed in Table 3 were computed for all sampled wetlands to evaluate water quality. This diatom index score is expressed as water quality optima (i.e. the tolerate limits of diatoms to water quality variables) of the sample, based on the diatom taxa 'i' weighted by the abundance of each taxon.

*Table 5 Diatom Indices values for the wetlands*

| SITES | IPS  | SLAD | DESCY | L&M  | SHE  | WAT  | EPI-D | ROTT | IDG  | CEE  | IBD  | IDAP | TDI  |
|-------|------|------|-------|------|------|------|-------|------|------|------|------|------|------|
| VP    | 7.7  | 13.2 | 17.3  | 11.1 | 14   | 8.5  | 10.9  | 16.3 | 12.8 | 11.6 | 1    | 11.6 | 84.3 |
| PP    | 7.3  | 10.3 | 11.3  | 9.6  | 13.4 | 10.6 | 7.6   | 8.3  | 10.1 | 4.6  | 6.1  | 7.2  | 92.5 |
| SM    | 9.3  | 10.6 | 9.8   | 9.3  | 13   | 6.2  | 8.1   | 11.3 | 10   | 8.4  | 8.1  | 7.2  | 76   |
| PP    | 7.6  | 10.1 | 11.1  | 9.3  | 13.4 | 10.2 | 7.9   | 12.7 | 11.9 | 3.7  | 6.6  | 7.2  | 90.3 |
| SN    | 5.9  | 7.8  | 10.4  | 8.2  | 8.9  | 1.7  | 8.1   | NA   | 13.5 | 3.3  | 6.5  | 5.8  | 99.9 |
| PR    | 13.5 | 10.1 | 11.7  | 9.1  | 6.1  | 13.6 | 8.3   | 10.7 | 12.3 | 6.3  | 15.8 | 6.7  | 77.9 |
| SM    | 9.8  | 10.5 | 9.9   | 8.5  | 8.6  | 10.7 | 8.3   | 11   | 12.2 | 8.2  | 7.7  | 4.9  | 86.3 |
| NL    | 8    | 9.2  | 9.8   | 7.8  | 9.6  | 10.9 | 8.9   | 3.8  | 6    | 5.2  | 3.9  | 7.2  | 81.3 |

**Note:** VP- Vedapatti wetland; PP- Pallapalayam wetland; SM- Sundakamuthur wetland; PP-Pallapalayam wetland; SN-Singanallur wetland; PR-Perur wetland ; SM- Sundakamuthur wetland; NL-Nooyal River. Refer Table 2 for details about the diatom indices

IPS and GDI Indices attributing to trophic status are listed in Table 6 (adopted from Eloranta & Soininen, 2002, Taylor, 2004). Based on this, scores listed in Table 5, indicate an increasing level of pollution or eutrophication.

Table 6 Class limit values for Diatom indices (Eloranta & Soininen, 2002)

| Index score | Class            | Trophy           |
|-------------|------------------|------------------|
| >17         | High quality     | Oligotrophy      |
| 15 to 17    | Good quality     | oligo-mesotrophy |
| 12 to 15    | Moderate quality | Mesotrophy       |
| 9 to 12     | Poor quality     | meso-eutrophy    |
| <9          | Bad quality      | Eutrophy         |

Diatom assemblages along with water quality class and trophic conditions of the wetlands are listed in Table 7.

Table 7 Trophic condition of the wetlands with dominant species

| Site name                | Dominant<br>Species                                                                      | Substrata        | Class | Water<br>quality               | Trophic<br>conditions                |
|--------------------------|------------------------------------------------------------------------------------------|------------------|-------|--------------------------------|--------------------------------------|
| Vedapatti<br>wetland     | <i>Diadesmis<br/>confervaceae,<br/>Gomphonema<br/>turris, G. gracile</i>                 | Aquatic<br>plant | 3-4   | Moderate<br>to poor<br>quality | Meso-<br>eutrophic to<br>mesotrophic |
| Pallapalayam<br>wetland  | <i>Aulocosiera<br/>granulata,<br/>Nitzschia<br/>sp.,<br/>Cyclotella<br/>meneghiniana</i> | Stone            | 3-5   | Moderate<br>to bad<br>quality  | Mesotrophic<br>to eutrophic          |
| Sundakamuthur<br>wetland | <i>Sellaphora<br/>pupula, Navicula<br/>rostellata</i>                                    | Sediment         | 4-5   | Bad quality                    | Eutrophic                            |
| Pallapalayam<br>wetland  | <i>Cyclotella<br/>meneghiniana,</i>                                                      | Aquatic<br>plant | 3-5   | Moderate<br>to bad             | Mesotrophic<br>to Eutrophic          |

|                       |                                                                                                                 |               |     |                          |                |
|-----------------------|-----------------------------------------------------------------------------------------------------------------|---------------|-----|--------------------------|----------------|
|                       | <i>Aulocosira granulata</i>                                                                                     |               |     | quality                  |                |
| Singanallur wetland   | <i>Cyclotella meneghiniana</i>                                                                                  | Aquatic plant | 5   | Bad quality              | Eutrophic      |
| Sundakamuthur wetland | <i>Sellaphora pupula,</i><br><i>Gomphonema parvulum,</i><br><i>Gomphonema sp.</i>                               | Aquatic plant | 4-5 | Bad to poor quality      | Eutrophic      |
| Perur wetland         | <i>Gomphonema parvulum,</i><br><i>Cymbella turgida,</i><br><i>Nitzschia obtuse,</i><br><i>Nitzschia clausii</i> | Aquatic plant | 4   | Moderate to Poor quality | Meso-eutrophic |
| Nooyal River          | <i>Nitzschia sp.</i><br><i>Navicula sp.</i>                                                                     | Aquatic plant | 4-5 | Bad to poor quality      | Meso-eutrophic |

### ***Habitat preference***

Diatom community structure varied very distinctly across the habitats. Epiphytic, Epilithic and Episammic habitats contained 50%, 10.4%, and 7.2% of taxa unique to that habitat. In all these habitats, *Gomphonema affine*, *G.parvulum*, *Aulocosira granulata* and *Navicula roetellata* were common, while *G. parvulum* and *A. granulata* were abundant.

Table 8 lists species with their habitats, shows that majority of the diatom species are epiphytes. Diatoms specific to epilithic habitats are *Fragilaria ungeriana*, *Thalassiosira duostra*, *Navicula anthracis*, *Eolimna subminuscula*, *Amphora veneta*, *Navicula veneta* and *Nitzschia sigma*. Epilithic habitat supports both centric and pennate diatoms. Episammic habitat supported 10 species which includes *Navicula viridula*, *Aulacoseira muzzanensis*,

*Gomphonema pseudoaugar*, *Hantzschia* sp., *Anomoeoneis sphaerophora*, *Pinnularia microstauron*, *P.graciloides*, *P.interrupta*, *Caloneis bacillum* and *Rhopalodia* sp.

*Cyclotella meneghiniana* and *Nitzschia obtuse* were most abundant and specific to epiphytic and epilithic substrata. Similarly, species with average dominance were restricted to only epiphytic and episammic habitats. However, diatom community specific to both epilithic and episammic were absent.

Table 8 Species list with their occurrence in three habitats

| Species                                                              | Epiphytic | Epilithic | Episammic |
|----------------------------------------------------------------------|-----------|-----------|-----------|
| <i>Gomphonema affine</i> Kutzing                                     | +         | +         | +         |
| <i>Gomphonema parvulum</i> Kutzing var.<br><i>parvulum</i>           | +         | +         | +         |
| <i>Aulacoseira granulata</i> (Ehr.) Simonsen                         | +         | +         | +         |
| <i>Navicula rostellata</i> Kutzing                                   | +         | +         | +         |
| <i>Cyclotella meneghiniana</i> Kutzing                               | +         | +         | -         |
| <i>Craticula accomoda</i> (Hustedt) Mann                             | +         | +         | -         |
| <i>Nitzschia obtusa</i> W.M.Smith                                    | +         | +         | -         |
| <i>Nitzschia frustulum</i> (Kutzing) Grunow<br>var. <i>frustulum</i> | +         | +         | -         |
| <i>Eunotia mesiana</i> Cholnoky                                      | +         | +         | -         |
| <i>Fragilaria biceps</i> (Kutzing) Lange-<br>Bertalot                | +         | +         | -         |
| <i>Navicula erifuga</i> Lange-Bertalot                               | +         | +         | -         |
| <i>Fragilaria ulna</i> var. <i>acus</i> (Kutz.)Lange-<br>Bertalot    | +         | +         | -         |
| <i>Nitzschia</i> sp.                                                 | +         | +         | -         |
| <i>Seminavis</i> D.G. Mann                                           | +         | +         | -         |
| <i>Navicula symmetrica</i> Patrick                                   | +         | +         | -         |

---

|                                                                |   |   |   |
|----------------------------------------------------------------|---|---|---|
| <i>Tryblionella calida</i> (Grunow in Cl. & Grun.              | + | - | + |
| <i>Gomphonema sp.</i>                                          | + | - | + |
| <i>Sellaphora laevissima</i> (Kutzing) D.G. Mann               | + | - | + |
| <i>Fallacia pygmaea</i> (Kützing) Stickle & Mann               | + | - | + |
| <i>Surirella tenera</i> Gregory                                | + | - | + |
| <i>Sellaphora pupula</i> (Kutzing) Mereschkowsky               | + | - | + |
| <i>Luticola acidoclinata</i> Lange-Bertalot                    | + | - | + |
| <i>Pinnularia acrospheria</i> Rabenhorst                       | + | - | + |
| <i>Nupela sp.</i>                                              | + | - | + |
| <i>Nitzschia palea</i> (Kutzing) W. Smith                      | + | - | + |
| <i>Placoneis sp.</i>                                           | + | - | + |
| <i>Navicula gregaria</i> Donkin                                | + | - | + |
| <i>Pinnularia sp.</i>                                          | + | - | + |
| <i>Craticula ambigua</i> (Ehrenberg) Mann                      | + | - | + |
| <i>Amphora copulata</i> (Kutz) Schoeman & Archibald            | + | - | + |
| <i>Caloneis molaris</i> (Grunow) Krammer                       | + | - | - |
| <i>Nitzschia umbonata</i> (Ehrenberg) Lange-Bertalot           | + | - | - |
| <i>Navicula trivialis</i> Lange-Bertalot var. <i>trivialis</i> | + | - | - |
| <i>Aulacoseira ambigua</i> (Grun.) Simonsen                    | + | - | - |
| <i>Bacillaria paradoxa</i> Gmelin                              | + | - | - |
| <i>Navicula zanoni</i> Hustedt                                 | + | - | - |

---

---

|                                                                   |   |   |   |
|-------------------------------------------------------------------|---|---|---|
| <i>Nitzschia pumila</i> Hustedt                                   | + | - | - |
| <i>Craticula</i> sp.                                              | + | - | - |
| <i>Cymbella turgidula</i> Grunow in A. Schmidt & al.              | + | - | - |
| <i>Navicula germainii</i> Wallace                                 | + | - | - |
| <i>Cocconeis</i> sp.                                              | + | - | - |
| <i>Cocconeis placentula</i> Ehrenberg var. <i>placentula</i>      | + | - | - |
| <i>Nitzschia liebetruthii</i> Rabenhorst var. <i>liebetruthii</i> | + | - | - |
| <i>Surirella angusta</i> Kutzing                                  | + | - | - |
| <i>Rhopalodia gibba</i> (Ehr.) O.Muller var. <i>gibba</i>         | + | - | - |
| <i>Pinnularia viridiformis</i> Krammer                            | + | - | - |
| <i>Surirella</i> sp.                                              | + | - | - |
| <i>Amphora montana</i> Krasske                                    | + | - | - |
| <i>Actinocyclus normanii</i> (Greg. ex Grev.) Hustedt             | + | - | - |
| <i>Pleurosigma salinarum</i> (Grunow) Cleve & Grunow              | + | - | - |
| <i>Aulacoseira distans</i> (Ehr.) Simonsen                        | + | - | - |
| <i>Pinnularia</i> species                                         | + | - | - |
| <i>Nitzschia supralitorea</i> Lange-Bertalot                      | + | - | - |
| <i>Planothidium rostratum</i> (Oestrup) Lange-Bertalot            | + | - | - |
| <i>Planothidium robustum</i> (Hustedt) Lange-Bertalot             | + | - | - |
| <i>Gomphonema turris</i> Ehr.                                     | + | - | - |

---

---

|                                                         |   |   |   |
|---------------------------------------------------------|---|---|---|
| <i>Gomphonema gracile</i> Ehrenberg                     | + | - | - |
| <i>Geissleria decussis</i> (Ostrup) Lange-Bertalot      | + | - | - |
| <i>Diploneis ovalis</i> (Hilse) Cleve                   | + | - | - |
| <i>Cyclotella woltereckii</i> Hustedt                   | + | - | - |
| <i>Diadesmis confervacea</i> Kützing                    | + | - | - |
| <i>Gomphonema</i> species                               | + | - | - |
| <i>Encyonema mesianum</i> (Cholnoky) D.G. Mann          | + | - | - |
| <i>Eunotia</i> sp.                                      | + | - | - |
| <i>Eolimna</i> sp.                                      | + | - | - |
| <i>Fragilaria ulna</i> (Nitzsch.) Lange-Bertalot        | + | - | - |
| <i>Diploneis puella</i> (Schumann) Cleve                | + | - | - |
| <i>Encyonema minutum</i> (Hilse in Rabh.) D.G. Mann     | + | - | - |
| <i>Eunotia minor</i> (Kutzing) Grunow in Van Heurck     | + | - | - |
| <i>Lemnicola hungarica</i> (Grunow) Round & Basson      | + | - | - |
| <i>Cymbella turgida</i> Gregory                         | + | - | - |
| <i>Nitzschia clausii</i> Hantzsch                       | + | - | - |
| <i>Nitzschia amphibia</i> Grunow f.amphibia             | + | - | - |
| <i>Navicula</i> sp.                                     | + | - | - |
| <i>Cymbella tumida</i> (Brebisson) Van Heurck           | + | - | - |
| <i>Placoneis</i> sp.                                    | + | - | - |
| <i>Navicula</i> sp.                                     | + | - | - |
| <i>Nitzschia capitellata</i> Hustedt in A.Schmidt & al. | + | - | - |

---

---

|                                                |   |   |   |
|------------------------------------------------|---|---|---|
| <i>Fragilaria ungeriana</i> Grunow             | - | + | - |
| <i>Thalassiosira duostra</i> Pienaar           | - | + | - |
| <i>Navicula anthracis</i> Cleve et Brun        | - | + | - |
| <i>Eolimna subminuscula</i> (Manguin) Moser    | - | + | - |
| Lange- -Bertalot & Metzeltin                   |   |   |   |
| <i>Amphora veneta</i> Kutz                     | - | + | - |
| <i>Navicula veneta</i> Kutz                    | - | + | - |
| <i>Nitzschia sigma</i> (Kutz) W.M.Smith        | - | + | - |
| <i>Navicula viridula</i> (Kutz) Ehrenberg      | - | - | + |
| <i>Aulacoseira muzzanensis</i> (Meister)       | - | - | + |
| Krammer                                        |   |   |   |
| <i>Gomphonema pseudoaugur</i> Lange-           | - | - | + |
| Bertalot                                       |   |   |   |
| <i>Hantzschia</i> sp.                          | - | - | + |
| <i>Anomoeoneis sphaerophora</i> (Ehr.) Pfitzer | - | - | + |
| <i>Caloneis bacillum</i> (Grunow) Cleve        | - | - | + |
| <i>Pinnularia microstauron</i> (Ehr.) Cleve    | - | - | + |
| <i>Pinnularia graciloides</i> Hustedt          | - | - | + |
| <i>Pinnularia interrupta</i> W.M.Smith         | - | - | + |
| <i>Rhopalodia</i> sp.                          | - | - | + |

---

## Conclusion

Samples collected from six wetlands of Coimbatore, records 27 dominant species of 96 Species belonging to 34 genera. Dominant species that are cosmopolitan include *Cyclotella meneghiniana*, *Nitzschia* sp., *Sellaphora pupula*, *Gomphonema parvulum* and *Navicula* sp. Singanallur wetland and Noyyal river stretches are characterised by pollution tolerant species with low diatom diversity. Diatom assemblages indicate that Vedapatti, Perur and Sundakamuthur wetlands are moderately polluted, while Pallapalayam, Noyyal River and Singanallur wetlands are heavily polluted. In these wetlands distribution of *Cyclotella* was determined by high electrolyte conductivity and *Gomphonema* and *Nitzschia* were distributed in all pH and conductivity ranges, where *Fragilaria* is restricted to neutral alkaline pH and moderate electrolytic waters. With respect to habitat preference epiphytic, epilithic and episammic habitats contained 50%, 10.4%, and 7.2% of taxa unique to that habitat. Diatom indices reveal that water quality of the sampled wetlands are moderate (mesotrophic) to heavily polluted (eutrophic).

## Acknowledgement

We thank the Ministry of Environment and Forests, Government of India and Indian Institute of Science for the infrastructure support and sustained financial support for ecological research. We are also grateful to Dr. Jonathan Taylor and Dr. J.P. Kociolek for confirming the identity of species. Dr. P Pramod and Mr. Joseph Reginald from SACON, Coimbatore provided useful tips during field investigations. We thank Institute Nanoscience Initiative (INI) for permitting us to use SEM facility and INI staff for their help and support.

## References

1. Atazadeh, I. Sharifi, M. Kelly, M. G., 2007. Evaluation of the Trophic Diatom Index for assessing water Quality in River Gharasou, western Iran. *Hydrobiologia* 589:165-173.
2. Barbour, M.T. Gerritsen, J. and White, J.S., 1996. Development of the Stream Condition Index (SCI) for Florida. A Report to the Florida Department of Environmental Protection, Stormwater and Nonpoint Source Management Section, Tetra Tech, Inc., Owing Mills, Maryland, USA .
3. Berger, W.H. Parker, F.L., 1970. Diversity of planktonic foraminifera in deep-sea.
4. Cemagref, 1982. Etude des methods biologiques d'appré- ciation quantitative de la qualité des eaux. Rapport Q. E. Lyon, Agence de l'eau Rhône-Méditerranée-Corse-Cemagref, Lyon, France.
5. Cholnoky, B. J., 1968. Die Ökologie der Diatomeen in Binnengewässern, p. 699. J. Cramer, Braunschweig.
6. Coste, M. and Ayphassorho, H., 1991. Étude de la qualité des eaux du Bassin Artois-Picardie à l'aide des communautés de diatomées benthiques (application des indices diatomiques). Rapport Cemagref. Bordeaux-Agence de l'Eau Artois-Picardie, Douai.
7. Cox, E. J, 1991. What is the basis for using diatoms as monitors of river quality? In B .A. Whitton, E. Rott & G.Friedrich (eds), Use of algae for monitoring rivers. E. Rott, Innsbruck: 33-40.
8. Dakshini, K. M. M. and Soni, J. K., 2006. Diatom distribution and status of organic pollution in sewage drains. *Hydrobiologia* 87, 205-209.
9. Dell'Uomo, A., 1996. Assessment of water quality of an Apennine river as a pilot study. In Whitton, B. A. & E. Rott (eds), Use of Algae for Monitoring Rivers II. Institut für Botanik, Universität Innsbruck, 65-73.

10. Descy, J.P. and Coste, M., 1991. A test of methods for assessing water quality based on diatoms. *Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie* 24: 2112–2116.
11. Directory of Indian Wetlands, 1993. Compiled by the World Wide Fund for Nature (WWF), India in collaboration with the Asian Wetland Bureau.
12. Dixit, S.S. Smol, J.P. Kingston, J.C. and Charles, D.F., 1992. Diatoms: Powerful indicators of environmental change. *Environmental Science and Technology*. 26 23-33.
13. Fore, L. S. and Gafe, C., 2002. Using diatoms to assess the biological condition of large rivers in Idaho (U.S.A.). *Freshwater Biology*. 47, 2015–2037.
14. Galatowitsch1, S. M. Whited, D.C. and Tester, J.R., 1999. Development of community metrics to evaluate recovery of Minnesota wetlands. *Journal of Aquatic Ecosystem Stress and Recovery* 6: 217–234, 1999.
15. Gandhi, H.P., 1957. A contribution to our knowledge of the diatom genus *Pinnularia*. *Journal of the Bombay Natural History Society* 54: 845 – 853.
16. Gandhi, H.P., 1959. Freshwater diatoms from Sagar in the Mysore State. *Journal of the Indian Botanical Society* 38: 305 – 331.
17. Gandhi, H.P., 1959. Notes on the Diatomaceae from Ahmedabad and its environs- II. On the diatom flora of fountain reservoirs of the Victoria Gardens. *Hydrobiologia* 14: 130 – 146.
18. Gandhi, H.P., 1961. Notes on the Diatomaceae of Ahmedabad and its environs. *Hydrobiologia* 17: 218 – 236.
19. Gandhi, H.P., 1962. Notes on the Diatomaceae from Ahmedabad and its environs- IV -The diatom communities of some freshwater pools and ditches along Sarkhej Road. *Phykos* 1: 115 – 127.
20. Gandhi, H.P., 1964. The diatom flora of Chandola and Kankaria Lakes. *Nova Hedwigia* 8: 347 – 402.

21. Gandhi, H.P., 1967. Notes on Diatomaceae from Ahmedabad and its environs. VI. On some diatoms from fountain reservoirs of Seth Sarabhai's Garden. *Hydrobiologia* 30: 248–272.
22. Gandhi, H. P., 1998. Freshwater Diatoms of Central Gujarat. Bishen Singh Mahendra Pal Singh. Dehra Dun.
23. Gernes, M.C. and Helgen, J.C., 1999. Indexes of biotic integrity for wetlands, section B: wetland vegetation IBI for depressional wetlands. Final Report to the United States Environmental Protection Agency Assistance Number CD995525-01, April 1999. Minnesota Pollution Control Agency, St. Paul, Minnesota, USA.
24. Gómez, N. and Licursi, M., 2001. The Pampean Diatom Index (IDP) for assessment of rivers and streams in Argentina. *Aquatic Ecology* 35: 173–181.
25. Gopal, B., 2005. Does inland aquatic biodiversity have a future in Asian developing countries?. *Hydrobiologia* 542:69–75.
26. Gosselink, J.C. and Turner, R.E., 1978. The role of hydrology in freshwater wetland ecosystems. Pp. 63-78 in freshwater wetlands. Ecological processes and management potential. New York. Academic press.
27. John, J., 1993. The use of diatoms in monitoring the development of created wetlands at a sandmining site in Western Australia. *Hydrobiologia* 269/270: 427-436.
28. Karthick, B. Krithika, H. and Alakananda, B., 2008. Short Guide to common freshwater Diatom Genera (Poster). Energy and Wetlands Research Group, CES, IISc, Bangalore.
29. Kelly, M. G. and Whitton, B. A., 1995. The Trophic Diatom Index: a new index for monitoring Eutrophication in rivers. *Journal of Applied Phycology* 7:433-444.
30. Kelly, M. G. Cazaubon, A. Coring, E. Dell'Uomo, A. Ector, L. Goldsmith, B. Guasch, H. Hürlimann, J. Jarlman, A. Kawecka, B. Kwandrans, J. Laugaste, R. Lindstrøm, E.A. Leitao, M. Marvan, P. Padisák, J. Pipp, E. Prygiel, J. Rott, E. Sabater, S. Dam, V .H. and Vizinet, J., 1998. Recommendations for the routine

sampling of diatoms for water quality assessments in Europe. *Journal of Applied Phycology* 10: 215-224, 1998.

31. Kelly, M. G. Penny, C. J. And Whitton, B. A., 1995. Comparative performance of benthic diatom indices used to assess river water quality. *Hydrobiologia* 302: 179-188.
32. Kerans, B.L. and Karr, J.R., 1994. A benthic index of biotic integrity (B-IBI) for rivers in the Tennessee valley, *Ecol. Appl.* 4 (4), pp. 768-785.
33. Kolkwitz, R. and Marsson, M., 1908. *Ökologie der pflanzliche Saproben*. Ber. Deutsche Bot. Gesellsch. 26: 505-5019.
34. Lavoie, I. Somers, K .M. Paterson, A. M. and Dillon, P .J., 2000. Assessing scales of variability in benthic diatom community structure. *Journal of Applied Phycology* 17: 509-513.
35. Leclercq, L. and Maquet, B., 1987. Deux nouveaux indices chimique et diatomique de qualite' d'eau courante. Application au Samson et à ses affluents (bassin de la Meuse belge). Comparaison avec d'autres indices chimiques, bioce'notiques et diatomiques. Institut Royal des Sciences Naturelles de Belgique, document de travail 28.
36. Lecointe, C., Coste M. and Prygiel, J., 1993. "Omnidia": Software for taxonomy, calculation of diatom indices and inventories management. *Hydrobiology* 269/270: 509-513.
37. Legendre, P. and Legendre, L., 1998. *Numerical Ecology*. 2<sup>nd</sup> English edition. Elsevier, Amsterdam.
38. Lenoir, A. and Coste, M., 1996. Development of a practical diatom index of overall water quality applicable to the French National Water Board network. In Whitton, B. A. & E. Rott (eds), *Use of Algae for Monitoring Rivers II*. Institut für Botanik. Universität Innsbruck, 29-43.
39. Lowe, R. L., 1974. Environmental requirements and pollution tolerance of freshwater diatoms. *Environmental Monitoring Series*, National Environmental Research Center, Cincinnati, Ohio.

40. Ludwig, John A. and Reynolds, J.F., 1988. Statistical ecology: a primer of methods and computing. Wiley Press, New York, New York. 337 pp.
41. Micacchion, M., 2004. Integrated Wetland Assessment Program. Part 7: Amphibian Index of Biotic Integrity (AmphIBI) for Ohio Wetlands. Ohio EPA Technical Report WET/2004-7. Ohio Environmental Protection Agency, Wetland Ecology Group, Division of Surface Water, Columbus, Ohio.
42. Mitsch, W.J. and Gosselink, J.G., 1986. Wetlands. Van Nostrand Reinhold. New York. Pp.539.
43. O'Connell, T. J. Jackson, L. E. Brooks, R. P., 2008. A bird community index of biotic integrity for the Mid-Atlantic Highlands. Environmental monitoring and Assessment 51:145-156.
44. Panini, D., 2007. The Ramsar Convention and National Laws and Policies for Wetlands in India. Technical Consultation on Designing Methodologies to Review Laws and Institutions Relevant to Wetlands.
45. Patrick, R., 1986. Diatoms as indicators of changes in water quality. In M. Ricard (ed.), Proceedings of the 8th International Diatom Symposium. Koeltz Scientific Books, Koenigstein: 759-766.
46. Prasad, S.N. Sengupta, T. Alok KumarVijayan VS, Vijayan, L. Ramachandra, T.V. Ahalya, N. And Tiwari, A.K., 2003. Wetlands of India. Natural Aquatic Ecosystems of India. 6-25.
47. Prygiel, J. and Coste, M., 1993. The assessment of water quality in the Artois-Picardie water basin (France) by the use of diatom indices. Hydrobiologia. 269/279 343-349.
48. Prygiel, J. Leveque, L. and Iserentant, R., 1996. Un nouvel indice diatomique pratique pour l'évaluation de la qualité des eaux en réseau de surveillance. Rev. Sci. Eau 1: 97-113.
49. Ramachandra.T.V., Kiran Rajashekariah and Ahalya.N., 2002. Conservation and Management of Wetlands, Allied Publishers, Mumbai, India

50. Reiss, K.C., 2006 Florida Wetland Condition Index for depressional forested wetlands. *Ecological Indicators*. Volume 6, Issue 2, Pages 337-352.

51. Richards, C., L.B. Johnson, and Host, G.E., 1996. Landscape scale influences on stream habitats and biota. *Canadian Journal of Fisheries and Aquatic Science*. 53 (suppl. 1). 295-311.

52. Rott, E., 1991. Methodological aspects and perspectives in the use of periphyton for monitoring and protecting rivers. In Whitton, B. A., E. Rott & G. Friedrich (eds), *Use of Algae for Monitoring Rivers*. Institut fur Botanik, Univ. Innsbruck, 9-16.

53. Round, F. E., 1991. Diatoms in River water monitoring studies. *Journal of Applied Phycology* 3: 129-145.

54. Schiefele, S. and Schreiner,C., 1991. Use of diatoms for monitoring nutrient enrichment acidification and impact salts in Germany and Austria. In Whitton, B. A., E. Rott and G. Friedrich (eds), *Use of Algae for Monitoring Rivers*. Institut für Botanik, Univ. Innsbruk.

55. Schoeman, F. R. and Archibald, R. E. M., 1976-1980. *The Diatom Flora of Southern Africa*. National Institute for Water Research, Pretoria.

56. Schulz, E.J. Hoyer, M.V. Canfield, D.E. 1999. An index of Biotic Integrity: A Test with Limnological and Fish Data from Sixty Florida Lakes. *Transactions of the American Fisheries Society* 128:564-577.

57. Sládeček, V., 1986. Diatoms as indicators of organic pollution. *Acta Hydrochimica et Hydrobiologica* 14: 555-566.

58. Soininen, J. Könönen, K., 2004. Comparative study of monitoring South-Finnish Rivers and streams using macroinvertebrate and benthic diatom community structure. *Aquatic ecology* 38: 63-75.

59. Springe, G. Sandin, L. Briede, A. and Skuja, A., 2006. Biological quality metrics: their variability and appropriate scale for assessing streams. *Hydrobiologia* 566:153-172.

60. Stoermer, E.F. and Smol, J.P., 2001. *The Diatoms: Applications for the Environmental and Earth Science*. Cambridge University Press. Cambridge
61. Taylor, J.C., Harding W. R and Archibald, C.G.M., 2007. *An Illustrated Guide to Some Common Diatom Species from South Africa*. WRC Report TT 282/07. Water Research Commission. Pretoria
62. Watanabe, T. Asai, K. and Houki, A., 1986. Numerical estimation of organic pollution of flowing waters by using the epilithic diatom assemblage - Diatom Assemblage Index (DIApo). *Science of the Total Environment* 55: 209-218.
63. Winter J.G. Duthie H.C., 2000. Stream epilithic, epipelic and epiphytic diatoms: habitat fidelity and use in biomonitoring. *Aquatic Ecology* 34: 345-353.
64. Wu, J. A., 1999. Generic index of diatom assemblages as bioindicator of pollution in the Keelung River of Taiwan. *Hydrobiologia* 397: 79-87.
65. Zelinka, M. and Marvan, P., 1961. Zur Präzisierung der biologischen Klassifikation der Reinheit fliessender Gewässer. *Arch.. Hydrobiol.* 57 389-407.

## Annexure: I - List of Species

---

|                                                                                  |      |
|----------------------------------------------------------------------------------|------|
| <i>Achnanthidium exiguum</i> (Grunow) Czarn.                                     | AEHE |
| <i>Actinocyclus normanii</i> (Greg. ex Grev.) Hustedt morphotype <i>normanii</i> | ANMN |
| <i>Amphora copulata</i> (Kutz) Schoeman & Archibald                              | ACOP |
| <i>Amphora montana</i> Krasske                                                   | AMMO |
| <i>Amphora veneta</i> Kutz                                                       | AVEN |
| <i>Anomoeoneis sphaerophora</i> (Ehr.) Pfitzer                                   | ASPH |
| <i>Aulacoseira ambigua</i> (Grun.) Simonsen                                      | AAMB |
| <i>Aulacoseira distans</i> (Ehr.) Simonsen                                       | AUDI |
| <i>Aulacoseira granulata</i> (Ehr.) Simonsen                                     | AUGR |
| <i>Aulacoseira muzzanensis</i> (Meister) Krammer                                 | AMUZ |
| <i>Bacillaria paradoxa</i> Gmelin                                                | BPAR |
| <i>Caloneis bacillum</i> (Grunow) Cleve                                          | CBAC |
| <i>Caloneis molaris</i> (Grunow) Krammer                                         | CMOL |
| <i>Carticula</i> sp.                                                             | CRAT |
| <i>Cocconeis placentula</i> Ehrenberg var. <i>placentula</i>                     | CPLA |
| <i>Cocconeis</i> sp.                                                             | COCS |
| <i>Craticula accomoda</i> (Hustedt) Mann                                         | CRAC |
| <i>Craticula ambigua</i> (Ehrenberg) Mann                                        | CAMB |
| <i>Cyclotella meneghiniana</i> Kutz                                              | CMEN |
| <i>Cyclotella woltereckii</i> Hustedt                                            | CWOL |
| <i>Cymbella tumida</i> (Brebisson) Van Heurck                                    | CTUM |
| <i>Cymbella turgida</i> Gregory                                                  | CTUR |
| <i>Cymbella turgidula</i> Grunow in A. Schmidt & al.                             | CTGL |
| <i>Diadesmis confervaceae</i> Kützing                                            | DCOF |
| <i>Diploneis ovalis</i> (Hilse) Cleve                                            | DOVA |
| <i>Diploneis puella</i> (Schumann) Cleve                                         | DPUE |
| <i>Encyonema mesianum</i> (Cholnoky) D.G. Mann                                   | ENME |

---

---

|                                                                               |      |
|-------------------------------------------------------------------------------|------|
| <i>Encyonema minutum</i> (Hilse in Rabh.) D.G. Mann                           | ENMI |
| <i>Eolimna</i> sp.                                                            | EOLI |
| <i>Eolimna subminuscula</i> (Manguin) Moser Lange-Bertalot & Metzeltin        | ESBM |
| <i>Eunotia mesiana</i> Cholnoky                                               | EMES |
| <i>Eunotia minor</i> (Kutzing) Grunow in Van Heurck                           | EMIN |
| <i>Eunotia</i> sp.                                                            | EUNO |
| <i>Fallacia pygmaea</i> (Kützing) Stickle & Mann                              | FPYG |
| <i>Fragilaria biceps</i> (Kutzing) Lange-Bertalot                             | FBCP |
| <i>Fragilaria ulna</i> (Nitzsch.) Lange-Bertalot var. <i>ulna</i>             | FULN |
| <i>Fragilaria ulna</i> var. <i>acus</i> (Kutz.) Lange-Bertalot fo. teratogene | FUAT |
| <i>Fragilaria ungeriana</i> Grunow                                            | FUNG |
| <i>Geissleria decussis</i> (Ostrup) Lange-Bertalot & Metzeltin                | GDEC |
| <i>Gomphonema affine</i> Kutzing                                              | GAFF |
| <i>Gomphonema gracile</i> Ehrenberg                                           | GGRA |
| <i>Gomphonema parvulum</i> Kutzing var. <i>parvulum</i> f. <i>parvulum</i>    | GPAR |
| <i>Gomphonema pseudoaugur</i> Lange-Bertalot                                  | GPSA |
| <i>Gomphonema</i> sp.1                                                        | GOMS |
| <i>Gomphonema</i> sp.2                                                        | GOMS |
| <i>Gomphonema turris</i> Ehr.                                                 | GTUR |
| <i>Hantzschia</i> sp.1                                                        | HAN1 |
| <i>Lemnicola hungarica</i> (Grunow) Round & Basson                            | LHUN |
| <i>Luticola acidoclinata</i> Lange-Bertalot                                   | LACD |
| <i>Navicula anthracis</i> Cleve et Brun                                       | NANT |
| <i>Navicula erifuga</i> Lange-Bertalot                                        | NERI |
| <i>Navicula germainii</i> Wallace                                             | NGER |
| <i>Navicula gregaria</i> Donkin                                               | NGRE |
| <i>Navicula rostellata</i> Kutzing                                            | NROS |
| <i>Navicula</i> sp.1                                                          | NASP |

---

---

|                                                                   |      |
|-------------------------------------------------------------------|------|
| <i>Navicula</i> sp.2                                              | NAVI |
| <i>Navicula symmetrica</i> Patrick                                | NSYM |
| <i>Navicula trivialis</i> Lange-Bertalot var. <i>trivialis</i>    | NTRV |
| <i>Navicula veneta</i> Kutzing                                    | NVEN |
| <i>Navicula viridula</i> (Kutzing) Ehrenberg                      | NVIR |
| <i>Navicula zanoni</i> Hustedt                                    | NZAN |
| <i>Nitzschia amphibia</i> Grunow f. <i>amphibia</i>               | NAMP |
| <i>Nitzschia capitellata</i> Hustedt in A.Schmidt & al.           | NCPL |
| <i>Nitzschia clausii</i> Hantzsch                                 | NCLA |
| <i>Nitzschia frustulum</i> (Kutzing) Grunow var. <i>frustulum</i> | NIFR |
| <i>Nitzschia liebetruthii</i> Rabenhorst var. <i>liebetruthii</i> | NLBT |
| <i>Nitzschia obtusa</i> W.M.Smith                                 | NOBT |
| <i>Nitzschia palea</i> (Kutzing) W.Smith                          | NPAL |
| <i>Nitzschia pumila</i> Hustedt                                   | NPML |
| <i>Nitzschia sigma</i> (Kutzing)W.M.Smith                         | NSIG |
| <i>Nitzschia</i> sp.                                              | NZSS |
| <i>Nitzschia supralitorea</i> Lange-Bertalot                      | NZSU |
| <i>Nitzschia umbonata</i> (Ehrenberg)Lange-Bertalot               | NUMB |
| <i>Nupela</i> sp.                                                 | NUPE |
| <i>Pinnularia acrospheria</i> Rabenhorst                          | PACR |
| <i>Pinnularia graciloides</i> Hustedt                             | PGRO |
| <i>Pinnularia interrupta</i> W.M.Smith                            | PINT |
| <i>Pinnularia microstauron</i> (Ehr.) Cleve                       | PMIC |
| <i>Pinnularia</i> sp.                                             | PINS |
| <i>Pinnularia</i> sp.1                                            | PIN1 |
| <i>Pinnularia viridiformis</i> Krammer                            | PVIF |
| <i>Placonesi</i> sp.1                                             | PLAS |
| <i>Placonesi</i> sp.2                                             | PLAS |

---

---

|                                                              |      |
|--------------------------------------------------------------|------|
| <i>Planothidium robustum</i> (Hustedt) Lange-Bertalot        | PLRO |
| <i>Planothidium rostratum</i> (Oestrup) Lange-Bertalot       | PRST |
| <i>Pleurosigma salinarum</i> (Grunow) Cleve & Grunow         | PSAL |
| <i>Rhopalodia gibba</i> (Ehr.) O.Muller var. <i>gibba</i>    | RGIB |
| <i>Rhopalodia</i> sp.                                        | RHOS |
| <i>Sellaphora laevissima</i> (Kutzing) D.G. Mann             | SELA |
| <i>Sellaphora pupula</i> (Kutzing) Mereschkowsky             | SPUP |
| <i>Seminavis</i> sp.                                         | SMNA |
| <i>Surirella angusta</i> Kutzing                             | SANG |
| <i>Surirella</i> sp.                                         | SURS |
| <i>Surirella tenera</i> Gregory                              | SUTE |
| <i>Thalassiosira duostra</i> Pienaar                         | TDUO |
| <i>Tryblionella calida</i> (grunow in Cl. & Grun.) D.G. Mann | TCAL |

---

## Annexure: II - Illustrations

This report is based on one time sampling and may not reflect the entire diatom flora of Coimbatore. This report is written keeping in mind the requirement of beginner's who have started the journey with diatoms. It is important not to adopt "nearest match" approaches in identification of diatom flora. Photographs included here were taken using a camera attached with bright field microscope (scale bars are equal to 10  $\mu\text{m}$ ) and some are using scanning Electron Microscope (SEM) available at **Institute Nanoscience Initiative (INI), Indian Institute of Science**. Identification of diatom taxa and ecological information provided in this report are based on the following literatures:

1. Cox, E.J., 1996 Identification of freshwater Diatoms from Live material. Chapman & Hall. London.UK.
2. Krammer, K. and Lange-Bertalot, H., 1986. Süßwasserflora von Mitteleuropa. Band 2. *Bacillariophyceae*. Teil 1. *Naviculaceae*. Gustav Fisher Verlag, Stuttgart. Germany.
3. Krammer, K. and Lange-Bertalot. H., 1988. Süßwasserflora von Mitteleuropa. Band 2. *Bacillariophyceae*. Teil 2. *Bacillariaceae, Epithemiaceae, Surirellaceae*. Gustav Fisher Verlag, Stuttgart. Germany.
4. Krammer, K. and Lange-Bertalot, H., 1991. Süßwasserflora von Mitteleuropa. Band 2. *Bacillariophyceae*. Teil 3. *Centrales, Fragilariaeae, Eunotiaceae*. Gustav Fisher Verlag, Stuttgart. Germany.
5. Krammer, K. and Lange-Bertalot, H., 1991. Süßwasserflora von Mitteleuropa. Band 2. *Bacillariophyceae*. Teil 4. *Achnanthaceae*, Kritische Ergänzungen zu *Navicula* (Lineolatae) and *Gomphonema*. Gustav Fisher Verlag, Stuttgart. Germany.
6. Krammer, K., 2000. The genus *Pinnularia*. Diatoms of Europe, Volume 1. Edited by H. Lange-Bertalot. A.R.G. Gantner verlag K.G.Germany.
7. Krammer, K., 2002. *Cymbella*. Diatoms of Europe, Volume 3. Edited by H. Lange-Bertalot. A.R.G. Gantner verlag K.G.Germany.

8. Krammer, K., 2003. *Cymbopleura, Delicata, Navicymbella, Gomphocymbellipsis, Afrocymbella*. Diatoms of Europe, Volume 1. Edited by H. Lange-Bertalot. A.R.G. Gantner verlag K.G.Germany.
9. Lange-Bertalot H., 2001. The genus *Navicula* sensu stricto 10 Genera Separated from *Navicula* sensu lato *Frustulia*. Diatoms of Europe, Volume 2. Edited by H. Lange-Bertalot. A.R.G. Gantner verlag K.G.Germany.
10. Lange-Bertalot, H. and Krammer, K., 1987. Bacillariaceae, Epithemiaceae, Surirellaceae. *Bibliotheca Diatomologica* 15. J. Cramer, Stuttgart.
11. Mann, D.G. Thomas, S.J. and Evans, K.M., 2008. Revision of the diatom genus *Sellaphora*: a first account of the larger species in the British Isles. *Fottea*, Olomouc. 8(1): 15-78.
12. Taylor, J.C., Harding W. R and Archibald, C.G.M., 2007. An Illustrated Guide to Some Common Diatom Species from South Africa. WRC Report TT 282/07. Water Research Commission. Pretoria
13. Vuuren, S.J. Taylor, J., Gerber, A. and Ginkel, C., 2006. Easy identification of the most common Freshwater Algae. A guide for the identification of microscopic algae in South African freshwaters.

**NOTE:** This document does not provide comprehensive list of all diatom species. If particular taxon is not found in this report, researchers are advised to refer diatom floras listed above. If this is not possible, it is appropriate to leave the specimen catalogued as “unidentified” with illustrations or photographs for future references.